
How can quantum computers do the amazing things that they are able to do, such
as factoring large numbers and finding discrete logarithms? What makes them
so different from classical computers? These questions are often asked, and they

have proved to be surprisingly difficult to answer—at least to the satisfaction of every-
one! In this short article, I’ll try to address these questions by comparing the operation
of a quantum computer with playing the game of 20 questions. But first, let’s consider an
unusual perspective on computers in general. 

What Is a Computer?

Well, a computer is really just some physical machine that you prepare in a certain
way, manipulate in certain ways, and then watch to observe the results it displays. That
is how physicists might describe the entire physical process that mathematicians call a
computation. This view seems a bit strange at first because we have become accustomed
to the more abstract view of the computer scientist, who sees a computation as a certain
type of process that acts on an input in order to produce an output. But our physical
description is not really so different. It just emphasizes the physical nature of the com-
putation, something that falls by the wayside in the abstracted view. The initial prepara-
tion is what a computer scientist calls an input, the actual computation is the physical
manipulation, and the observation at the end results in getting the output. So, whereas a
computation can be viewed abstractly as a process, its physical nature can also be
emphasized. This view will help us make the transition to understanding what a quan-
tum machine is doing in a special way. Unlike classical computers, which are physical
devices manipulated according to the laws of classical physics, quantum computers are
physical devices manipulated according to the laws of quantum physics. 
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Quantum Computers and the 20 Questions Game

Having understood that a computation is ultimately a physical process, let’s go on 
to see how using a quantum machine is much like playing the game of 20 questions.
Twenty questions is played as follows. I think of a number between 1 and 220. You try
to guess my secret number by asking questions such as, “Is your secret number less
than 2378?” If you ask your questions well, you can guess my secret number in, at the
most, 20 questions. Why? Well, with each question, you can eliminate half of the
remaining candidates. Computer scientists call this process binary search, and it allows
you to find a secret number less than 2n in log 2n = n questions at the most. The key
idea is that, by cutting the number of possibilities in half with each question, you are
left with one possibility after only n questions. This principle generalizes. For example,
if you are searching for a secret item among N possibilities and with each question 
you are able to eliminate a fraction 1 – 1/c of the possibilities, then you can find the
secret in logcN questions. In general, you might not be looking for a number. You
might be looking for a secret element x in a set S called a search space. The key to
quick success is still to be able to eliminate a constant fraction of the remaining 
candidates. Now, let’s consider a slightly different version of this game, which we call
“random 20 questions.”

In playing random 20 questions, you don’t get to choose your question. Instead, you
randomly select a subset Q (used for the word “question”) consisting of half of the
N elements in the search space, and you ask, “Is the secret element in Q?” After I give
you the honest answer, you choose a new random subset Q and ask again. Surprisingly,
again after only about log N questions, you will almost surely have narrowed the possi-
bilities down to the one correct answer. We say “almost surely” because there is a tiny,
tiny chance that you will get unlucky and never be able to eliminate one of the elements
that is not the secret element. This tiny chance is the result of each question having been
selected randomly rather than deterministically, which is the case when playing the 
original 20 questions game. After 2 log N questions, for example, that possibility is
incredibly small. So, even by asking random questions, you can discover the secret ele-
ment quickly. The reason is that, as in the original 20 questions game, you are able to
eliminate each incorrect element as a possibility. Although in the random 20 questions
game this process of elimination is only very highly probable, it is so close to being 
certain that, for all practical purposes, we won’t worry about it. Now, let’s talk about
playing quantum 20 questions. 

In this game, I choose a secret quantum state ρ1 from a search space of quantum
states S = {ρ1, ρ2…, ρΝ}, and I supply a copy of the secret state whenever you request
one. Your task is to discover my secret quantum state by asking quantum questions, that
is, by doing measurements on each requested quantum state and thus getting informa-
tion about the state. Now, let’s back up a bit and clarify these terms. What is a quantum
state? A pure state ψ is simply a vector in a Hilbert space. A mixed state, or more 
simply a state, is a convex combination of pure states ψi, that is, a classical probabilistic
mixture of pure states:

(1)
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Quantum Questions

What is a quantum question? A quantum question is typically called an observable.
We’ll think of a quantum question as simply an orthonormal basis. The answer to a
quantum question will be one of the basis vectors. So, suppose the secret quantum state
is a pure state |ϕ〉 and the quantum question is {|φ1〉, |φ2〉,…, |φΜ〉}, a basis of the
M-dimensional Hilbert space. According to the basic rules of quantum mechanics, we
get the answer |φ〉 with probability |〈φ |ϕ〉| 2. If we have a mixed state instead of a pure
state, the probability formula is extended by convexity, as usual. How many quantum
questions does it take to guess the secret quantum state? That depends on lots of things.
It depends on what quantum questions you are allowed to ask me. And it also depends
on how different the states in S are from each other. In this context, the word “different”
means how distinguishable the states are from each other. For example, two orthogonal
pure states are as different as two states can be. Two very nearly parallel pure states are
almost indistinguishable in that it takes many experiments and questions to tell them
apart based on the outcome statistics. The standard measure of similarity between two
pure states is simply their overlap 〈φ |ϕ〉. There are measures for the similarity or over-
lap of mixed states as well, but we won’t need the formula. We just need to know that 
to tell apart two similar states requires many experiments whereas to tell apart two very
different states requires few experiments. 

So, going back to quantum 20 questions, let’s assume you can ask any quantum
question you want; that is, you can choose any orthonormal basis as the observable. If
all the states in S are sufficiently different from each other, you can find my secret state
after only a few questions. Usually, when we use the word “few” in this context, we
mean log |S| or log2|S| or something like that. (A computer scientist would say that few
means a polynomial function of the logarithm of the size of the search space.) The key
to a fast search is that all the states must be quite different from each other. 

It turns out that playing search games is much like trying to break codes. If you 
try to break a code, you want to look for a cryptographic key. The key is what allows 
you to decipher the code and read the message. One popular code is the RSA. Named
after its inventors—Ronald Rivest, Adi Shamir, and Leonard Adleman—the RSA uses 
as its key the secret factors of a large number N. Now, suppose you are trying to break 
a code by finding a secret key k from among a very large set of possible keys 
K = {k1, k2…, kΜ}. Further suppose that, by some process and without knowing the key,
you can prepare a quantum state ρ corresponding to the key k. So, you now have a state
ρ, which you know comes from the search space S = {ρ1,…, ρM}, which is the set of
states corresponding to all the possible secret keys, but you don’t know exactly which of
the states you have. If the states of S are all sufficiently different, then you can ask quan-
tum questions to determine the secret state efficiently. And if you can find the secret state,
then you can easily figure out the original secret key corresponding to that secret state! 

Indeed, this is precisely how quantum computers would solve various classical crypto-
graphic problems, such as factoring and finding discrete logarithms. A factoring problem
is one in which you are given a very large number N (say, one with 2000 digits), which is
the product of two primes N = pq, and your task is to find p and q. For the discrete loga-
rithm problem, you are given a large prime number p (say, once again, one with
2000 digits) and two numbers a and b less than p. Your task is to find n such that
an = b (mod p). In both cases, you are looking for a secret key k from among a known set
of possible secret keys. Also, in both cases there is a process by which you can prepare a
quantum state from which k can be deduced. Significantly, this preparation process does
not require knowing k.

This last point is important because, if you had to know the key first, then the code-
breaking machine would not be very useful. We will later illustrate this process in an
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example (see the section “Simon’s Problem”). Finally, this process has the special and
important quality that, for two different keys, k1 and k2, the resulting quantum states, ρ1 and
ρ2, are quite different, or clearly distinguishable from one another, as discussed before. We
can therefore ask quantum questions, which allow us to distinguish among states and iden-
tify secret keys. This ability to distinguish among the states is usually accomplished by
eliminating the possibility of a constant fraction, say 1/2, of the remaining states. As we
saw in the game of 20 questions, eliminating a constant fraction after each question allows
us to narrow the possible states down to the one true state in only log N questions.
However, since the quantum formula gives probabilities for certain outcomes, we eliminate
the false states with high probability (not with certainty), as in the game of random
20 questions. 

Identifying Secret Quantum States

Let us fill in some of the technical details of our sketch. First, can we really ask any
quantum question? No, we can’t, but fortunately we are able to ask the questions that let us
solve factoring and discrete logarithm problems. Recalling our observation that a computa-
tion is actually a physical process, we must be sure to carry out efficiently the physical
process corresponding to the quantum question we wish to ask. We accomplish this task by
breaking down the observable into elementary quantum “gates.” Elementary quantum gates
are analogous to the basic logical gates and, or, and not, which are the building blocks of
circuits in classical computers (for more details, see Shor 1997). In the case of factoring 
and discrete logarithm problems, it turns out that we have to ask only one quantum question
over and over again in order to obtain enough information for identifying the secret 
quantum state. Called the quantum Fourier transform, this quantum question allows us to
distinguish among the states that arise in the two search spaces for the factoring and discrete
logarithm problems. These states are called hidden subgroup states because, in those 
problems, the key we are looking for corresponds to an unknown subgroup H of a finite
abelian group G. The search space corresponds to the set {ρΗ1

, ρH2
,. . . ρHi

}, where H1 to Hi

is a range over all the possible subgroups of G, and ρH is the mixed state that corresponds 
to a uniform mixture of the pure coset states

(2)

It can be shown that for H1 and H2 , two different subgroups, the corresponding states
ρΗ1

and ρH2
are sufficiently different. Mathematically speaking, the overlap of ρΗ1

and
ρH2

is less than 1/2 (Ettinger et al. 1999). For a discussion of the hidden subgroup prob-
lem and the reasons why the quantum Fourier transform is the right quantum question,
see Ettinger and Peter Hoyer (1999). 

Simon’s Problem

To illustrate everything we have discussed, let’s consider a concrete example known
as Simon’s problem. Simon’s problem and the quantum algorithm to solve it contain the
essence of what is going on in the factoring and discrete logarithm problems; the latter
set of problems, however, also contains a number of technical twists that obscure the
main ideas. The set of all bit strings of length n, denoted Z2

n, is a commutative group if
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we add bit strings using “binary add without carry.” This group will be our search space.
I will secretly choose an element s of this group and provide you with a function in the
form of a “black box,” fs on Z2

n, with the following special property: I guarantee that
fs(x) = fs(y) if and only if x – y = s. So, the function fs encodes the secret bit string s.
Because f depends entirely on s, the latter becomes a subscript on f. If you compute the
function on the elements of the group fs(a), fs(b), fs(c)…, eventually you’ll get a colli-
sion, which means that you’ll find fs(g) = fs(t) and then you’ll know that the secret bit
string is s = g – t. But notice that the search space, or the group, has 2n elements, which
is a very large number. In the worst case, it could take you 2n–1 + 1 calculations to get a
collision, and on average it will take about 2n/2 because of the so-called birthday para-
dox.1 That is still a lot of time! But the quantum algorithm can solve this problem much
more quickly—in about n tries only. 

Here is how Simon’s problem works: You start with a quantum computer whose 
qubits are conceptually divided into two registers. Then you prepare the pure state
|ψ〉 = 1/2n/2 ∑b|b〉, where b ∈ Z2

n. Thus, in the first register, there is a superposition of all
the bs. Now, because you have the black box function fs, you can compute fs(b) in the 
second register to obtain the pure state |ψs〉 = 1/2n/2 ∑b|b〉|fs(b)〉, where again b ∈ Z2

n. Notice
that this procedure for preparing the state ψs is easily accomplished without any knowledge
of the secret bit string s. Of course, for different secret bit strings, we obtain different states.
In fact, this is the key point. Our quantum algorithm is really just a method used to distin-
guish among these different states and thus discover the underlying secret bit string. 

We now observe, or perform a measurement, on the second register. Because of the
way quantum mechanics works, this observation collapses |ψs〉, producing a specific
value in the second register, say c, and the first register is left in a superposition of bit
strings that map to c under fs. Because fs has the special property described earlier,
the bit strings that map to c will differ by the secret bit string s. Therefore, the state of
the computer is

(3)

where a and a + s are elements of Z2
n such that fs(a) = c and fs(a + s) = c. The only use

of the second register is to produce this special superposition in the first register. 
We will no longer use the second register or its contents, so we drop it from our notation
and write 

(4)

When c is chosen, the resulting mixed state can be written as

(5)

Recall that we don’t know the secret bit string s, and therefore we don’t know that
the state we just prepared is ρs. All we know is that we have prepared a state that is in
the search space of quantum states {ρs}s∈Z

2
n . Each of these possible quantum states cor-

responds to a possible secret bit string. Our task is to identify the secret quantum state
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1 The birthday paradox derives its name from the surprising result that you only need 23 people (a slightly larger
number than 3651/2) to have a 50 percent chance that at least two of them have the same birthday.
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and thus the secret bit string. We now define the Fourier observable. For each bit string
b in Z2

n, define

(6)

The orthonormal basis is {|χb〉}, where b ∈ Z2
n is called the Fourier basis or the Fourier

observable. Mathematicians might recognize this basis as being composed of the charac-
ters of the group Z2

n. A character χ of a finite abelian group is a homomorphism from
the group to the circle in the complex plane. Formally, the Hilbert space in which we 
are working is C[G], the group algebra, which is the complex vector space with the
canonical basis, or the point mass basis, indexed by the elements of the group. A charac-
ter can be viewed as a vector in C[G] via the following identification:

(7)

It is a fundamental fact (Tolimieri et al. 1997) that the set of characters viewed as
vectors in this way is an orthonormal basis for C[G]. Indeed, a Fourier transform is
nothing other than a change of basis from the point mass basis, {|g〉}g∈G, to the basis of
characters, {|χ〉}χ. 

It is easy to show (Jozsa 1998) that, if we now observe the contents of the remaining
register in the Fourier basis, we observe |χb〉 with nonzero probability if and only if 
s • b = 0 (mod 2). This is the important relationship between the secret bit string s and
the only possible outcomes of the experiment. Therefore, if the actual outcome of the
observation is |χb〉, then we have eliminated half of the possible secret states. We have
therefore eliminated all states ρd such that d • b = 1 (mod 2). By repeating the state
preparation procedure followed by a measurement in the Fourier basis approximately 
n times, we eliminate all possible states except the true secret state ρs. �
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